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Abstract 

On triplet sensitization, N-methoxy- 1- (9-anthryl)-methanimine undergoes one-way Z --* E isomerization; on direct irradiation, it undergoes 
two-way isomerization between the Z and E isomers. On the basis of the concentration dependence of the quantum yields of Z---, E isomefization, 
and transient and fluorescence spectroscopy, the mechanism of this spin-state-dependent photochemical isomerization is discussed. 
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1. Introduction 

We have recently reported that N-methoxy- 1- (2-anthryl)- 
ethanimine (I) undergoes one-way Z --, E isomerization, pro- 
ceeding via a quantum chain process, on triplet sensitization, 
whereas N-methoxy- 1- ( 1 -pyrenyl)-methanimine undergoes 
two-way isomerization with a quantum chain process for the 
Z---, E direction [ 1-5 ]. Therefore the substituent effect of the 
aryl group on the isomerization of the C=N double bond 
appears to be similar to that on the isomerization of the C=C 
double bond [6-15]. With regard to the effect of the position 
of substitution, 9-anthrylethenes and 2-anthrylethenes 
undergo one-way Z---, E isomerization in both the excited 
singlet and triplet states [ 16-20]. 
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In this paper, it is reported that N-methoxy- 1- (9-anthryl) - 
methanimine (HI) undergoes one-way Z--* E isomerization 
in the excited triplet state, but two-way isomerization in the 
excited singlet state. Furthermore, in the excited singlet state, 
Z--* E isomerization proceeds partially as a novel adiabatic 
process. 

2. Experimental details 

A mixture of 9-anthracenecarboxyaldehyde and O-meth- 
ylhydroxyamine hydrochloride was refluxed in ethanol con- 
taining sodium acetate for 12 h. Pure E- and Z-HI were 
separated from the reaction mixture by flash column chro- 
matography over silica gel eluted with hexane-ethyl acetate 
(95 : 5), and recrystallized from hexane. 

z - m :  mH-NMR (500 MHz, CDCI~) 8:3.89 (s, 3H, meth- 
oxy H), 7.21-7.50 (m, 4H, ArH), 7.94-7.98 (m~ 4H, ArH), 
8.19 (s, IH, ArH), 8.42 (s, IH, H-C=N); melting point 
(m.p.), 105-!05.5 °C. E-HI: tH-NMR (500 MHz, CDCI3) 
8:4.15 (s, 3H, methoxy H), 7.47-7.50 (m, 2H, ArH), 7.52- 
7.50 (m, 2H, ArH), 7.99-8.01 (m, 2H, ArH), 8.45-8.47 (m, 
3H, ArH), 9.16 (s, IH, H-C=N);  m.p., 154.5-i56.5 °C. 

Analysis: calculated for C!6HtablO: C, 81.68%; H, 5.57%; 
N, 5.95%; found for Z-III: C, 81.41%; H, 5.58%; N, 5.87%. 

Irradiation was performed at 366 nm for direct irradiation 
and at 480 nm for camphorquinone sensitization with a 150 
W xenon lamp of a Hitachi F-4000 spectrofluorometer. The 
photostationary state isomeric ratios and the quantum yields 
of isomerization were determined in benzene in the presence 
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or absence of camphorquinone. The conversion was analysed 
by high performance liquid chromatography (HPLC, Waters 
600 multisolvent delivery system and 490 programmable 
multiwavelength detector with a 740 data module). The light 
intensity was measured using potassium tris(oxalato)- 
ferrate(IH) actinometry. 

Laser flash photolysis was performed with a 308 nm 
Lambda Physik LPX- 105 excimer laser (XeCI) as excitation 
light source and a pulsed xenon arc (Wacom KXL-151,150 
W) as monitoring light source [ 1 ]. 

Time-resolved fluorescence spectra were measured with a 
system consisting of a titanium sapphire laser (Spectra-Phys- 
ics 3900, equipped with a frequency doubler (SP390) and a 
pulse selector (SP3980); approximately 2 ps full width at 
haif-maximuilt (FWHM)) operated with a continuous wave 
(CW) Ar + laser (Spectra Physics 2060) and a streak scope 
(Hamamatsu C4334). The jitter of the whole system was 
approximately 50 ps FWHM. 
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Fig. 2. Effect of temperature on the fluorescence spectra of E-HI (a) and 
z - m  (b) in Ioluene. 

3. Results and discussion 

3.1. Absorption and fluorescence properties 

Fig. I shows the absorption, fluorescence and fluorescence 
excitation spectra of E- and Z-Eli in benzene. E- and Z-HI 
exhibit different fluorescence spectra, with their fluorescence 
excitation spectra well matched to the corresponding ground 
state absorption spectra. The fluorescence spectrum of E-IH 
is almost the same in the temperature range -90 -25  °C, but 
the spectral profile of Z-il l  changes with temperature: the 
intensity decreases in the long-wavelength region with a con- 
comitant increase in the sho~-wavelength region (Fig. 2). 
These results indicate that, at room temperature, Z-HI under- 
goes adiabatic IZ* --, IE* isomerization in the excited singlet 
state to give the fluorescence of tE-lII* as well as that of tZ- 
HI*. This is demonstrated more clearly by picosecond fluo- 
rescence spectroscopy (Fig. 3). E-IH gives the same fluo- 
rescence spectrum at all time delays from the excitation laser 
pulse (2 ps FWHM); however, the fluorescence spectrum of 
z - m  shifts from the short-wavelength component (accu- 
mulated between 0 and 0.417 ns after the laser pulse) to the 
long-wavelength component (3.13-3.54 ns); the latter is 
very similar to the spectrum of E-IH (Fig. 2). Therefore the 
spectrum accumulated between 0 and 0.4 ns cen mainly be 
ascribed to Z-HI and that at 3.1-3.5 ns to E-Ill. The fluores- 
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Fig. 3. Picosecond time-resolved fluorescence spectra of E-HI (a) and 
z - m  (b) at room temperature. 
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cence decay curve of E-I l l  observed at 439 nm on excitation 
at 390 nm fits a single-component analysis to give a fluores- 
cence lifetime of 2.4 ns. The fluorescence decay of Z-Hl fits 
a two-component analysis to give 0.40 ns and 2.4 ns; the 
former corresponds to the decay of 1Z-HI* and the latter to 
IE.HI*. 

The fluorescence quantum yields of Z- and E-H1 on 
excitation at 366 nm at room temperature were determined 
to be 0.075 and 0.26, and the quantum yields of intersystem 
crossing of Z- and E-I l l  on excitation at 308 nm at room 
temperature were determined to be 0.14 and 0.12 (using 
anthracene as a standard). 

3.2. Quantum yields of L'somerization and the 
photostationary state isomeric composition 
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Fig. 6. T -T  absorption spectra of E-HI (a) and Z-EEl (b) on Michler's 
ketone sensitization. 

On direct irradiation at 366 nm, E- and Z-IH undergo two- 
way isomerization to give a photostationary state mixture of 
[ E-Ill] / [Z-il l]  ffi 71.5/28.5 (Fig. 4). The quantum yield of 
Z ~ E isomerization (q~z--. E) increases linearly with the Z 
isomer concentration from 0.55 at 4.5 × 10 -4 M to 0.78 at 
1.8 × 10-3 M, whereas the quantum yield of E---, Z isomeri- 
zation ( q~E-. z) is almost constant, i.e. approximately 0.29 in 
the concentration range (4.3-17) × 10 -4 M (Fig. 5). 

In contrast, on camphorquinone sensitization, IH under- 
goes one-way Z--* E isomerization, with no E ~ Z isomeri- 
zation. On camphorquinone sensitization, Oz--.,: increases 
with increasing Z isomer concentration from i.8 at 3 × 10 -4 
M to 2.8 at 1.5× 10 -3 M (Fig. 5), indicating that isomeri- 
zation proceeds as a quantum chain process in the excited 
state. 
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Fig. 5. Quantum yields of Z-E photoisomerization of HI on direct irradiation 
and on camphorquinone sensitization. 
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3.3. Triplet-triplet (T-T) absorption spectroscopy 

Fig. 6 shows the T-T absorption spectra of IH in benzene 
observed on Michler's ketone (ET = 65.6 kcal mol-m) sen- 
sitization at 308 nm with an excimer laser. Z- and E-HI give 
similar T-T absorption spectra with a Am~ value shorter than 
410 rim, assigned to the E triplet (3E*). Direct excitation of 
E- and Z-Ill  at 308 nm also gives similar transient spectra, 
assigned to 3E*. The triplet lifetimes (~"r) are 5 p.s and 58 p.s 
under an argon atmosphere and degassed conditions 
respectively. 

The T-T absorption spectrum of HI is quenched by azu- 
lene, giving a fast and slow decay, indicating the energy 
transfer equilibrium between aE* and azulene ( Er = 39.8 kcal 
mol-  ! ) as described in Eqs. ( 1 ) - (3 )  

K 
3E* + t A z ~  tE+3Az* (1) 

[ IE] [ 3Az* ] 
K ' -  (2) 

[tAz] [3E*] 

AEv= AG= - R T i n  K (3) 

The treatment reported previously [ 21 ] gives an equilibrium 
constant K of 0.15 at the initial concentrations of azulene and 
E-Il l  of 4.7 × 10 -3 M and 1.4 × 10- 3 M respectively. When 
the free energy change in reaction ( i ), A G, is assumed to be 
equal to the difference in triplet energy between E-HI (Er(E- 
I l l )  ) and azulene (Er (Az) ) ,  i.e. AE, r = ET(Az) - E r ( E -  
I l l ) ,  the AEr value is estimated t¢ ,be approximately 0.8 kcal 
mol-  1. This value enabled us to estimate the energy of 3E* 
to be 39 kcal mol- ~ over its ground state. 

3.4. Mechanism of one-way Z---) E isomerization of l l l  in 
the excited triplet state and two-way Z-E isomerization of 
III in the excited singlet state 

Scheme 1 shows the mechanism of one-way Z--* E isom- 
erization in the excited triplet state. In the triplet state, Z-*  E 
isomerization takes place as a quantum chain mechanism via 
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energy transfer from SE* to mZ to regenerate the excited state, 
as shown in Eq. (4). According to this mechanism, the quan- 
tum yield of isomerization on triplet sensitization (a~ens-,-Z... E, ~ is 
described by Eq. (5) 

kEz 

3E* + lZ---~ IE+ sZ* 

~ z ~  = ~i~,~ X ( 1 + kFZ'rT[ Z] ) 

(4) 

(5) 

The slope of Fig. 5 on camphorquinone sensitization 
( ~i~ × kEz'r-r) is determined to be 9.0× 10 z mol-  tdm 3. We 
can calculate the k ~  value to be 1.8 × 108 M-~ s - '  using 
"r-r = 5 ItS determined under an argon atmosphere. This value 
is slightly slower than the diffusion-controlled rate constant 
(kaif) in benzene (kdir ~ 1 × 10 '° M -!  s - i ) .  From Eq. (6) 
for endergonic energy transfer, where A Ea is the triplet energy 
difference between Z- and E-Ill, we can estimate that the 
triplet energy of E-Ill  is lower than that of Z-Ill  by approx- 
imately 2 kcal moi-  ~ [ 22]. 

kEz=kaifexp( - A E J R T ) I [  1 +exp( -AEalRT) I (6) 

On direct irradiation, I l l  undergoes two-way isomeriza- 
tion. Two-way isomerization can take place in the singlet 
potential energy surface either by deactivation at the perpen- 
dicular singlet state ( tp*) or by adiabatic mutual isomeri- 
zation between IZ* and mE*. The fluorescence of both Z-Ill 
and E-Ill  is observed on excitation of Z-Ill, whereas E-Ill 
gives the fluorescence of the E isomer only. Thus fluorescence 
spectroscopy enables us to estimate the occurrence of 
~Z*~ rE* adiabatic isomerization, whereas ~E* does not 
give IZ* directly. 

E-Ill  is isomerized to Z-Ill  on direct irradiation by twisting 
of the double bond to give ~p*, and is deactivated at this 
conformation to ground state 'p to give the Z and E isomers. 
Z-Ill is isomerized to E-Il l  in a two-way process on direct 
irradiation, with deactivation from ~p*, but partly undergoes 
an adiabatic ~Z*~ mE* process in the excited singlet state 
followed by deactivation to ground state mE. We can estimate 
the ratio of adiabatic mZ*--, mE* isomerization to diabatic 
isomerization decaying at 'p* to be 45 : 55 from the recon- 
struction of the fluorescence spectrum observed on excitation 
of Z-Ill  at room temperature. 
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Fig. 7. Potential energy surfaces of one-way and two-way isomerization of 
/If in the excited triplet and singlet states respectively. 

3.5. Potential energy surfaces of one-way and two-way 
isomerization in the excited triplet and singlet states 
respectively 

Fig. 7 depicts the potential energy surfaces of one-way and 
two-way isomerization in the excited triplet and singlet states. 
One-way Z ~ E isomerization in the excited triplet state takes 
place as a quantum chain process as observed for I and 2- 
anthrylethenes. However, the q~z-. E value of I l l  is lower than 
those of I and 2-anthrylethenes. For example, ~z- ,  E is 2.8 at 
[Z-Il l]-"  ! .47× 10 -4 M, whereas qbz_. E is 23.5 at [Z- 
I] -- 1.34 × 10 -4 M [ 1 ]o The energy difference between 3E* 
and 3Z* may be responsible for the different qbz__. E values 
observed for Z-I and Z-Ill: in I, 3Z* and 3E* are located at 
nearly the same energy, but in Ill ,  3Z* is less stable than 3E* 
by approximately 2 kcal mol - ~ as described above. 

In the singlet excited state, Z---* E isomerization o f l l I  takes 
place via both an adiabatic tZ* --, IE* process and adiabatic 
process with deactivation at ~p*, whereas E ~ Z isomeriza- 
tion proceeds as a diabatic process with deactivation at 'p*. 
The above mechanism may occur in the potential energy 
surface, where ~p* is located as a very shallow energy mini- 
mum and has sufficient time for deactivation to the ground 
state, and where the barrier for rotation to ~E* is not very 
high and further twisting to give ~E* can take place to yield 
adiabatic ~Z* ~ ~E* isomerization. 
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